2 Introduction to Java 

2.1 Objectives 

In this section, we will be discussing a little bit of Java history and what is Java Technology. We will also discuss the phases that a Java program undergoes. 

At the end of the lesson, the student should be able to: 

 Describe the features of Java technology such as the Java virtual machine, garbage 

collection and code security 

 Describe the different phases of a Java program 

2.2 Java Background 

2.2.1 A little Bit of History 

Java was created in 1991 by James Gosling et al. of Sun Microsystems. Initially called Oak, in honor of the tree outside Gosling's window, its name was changed to Java because there was already a language called Oak. 

The original motivation for Java was the need for platform independent language that could be embedded in various consumer electronic products like toasters and refrigerators. One of the first projects developed using Java was a personal hand-held remote control named Star 7. 

At about the same time, the World Wide Web and the Internet were gaining popularity. Gosling et. al. realized that Java could be used for Internet programming. 

2.2.2 What is Java Technology? 

2.2.2.1 A programming language 

As a programming language, Java can create all kinds of applications that you could create using any conventional programming language. 

2.2.2.2 A development environment 

As a development environment, Java technology provides you with a large suite of tools: a compiler, an interpreter, a documentation generator, a class file packaging tool, and so on. 

2.2.2.3 An application environment 

Java technology applications are typically general-purpose programs that run on any machine where the Java runtime environment (JRE) is installed. 

[image: image1.jpg]



2.2.2.4 A deployment environment 

There are two main deployment environments: First, the JRE supplied by the Java 2 Software Development Kit (SDK) contains the complete set of class files for all the Java technology packages, which includes basic language classes, GUI component classes, and so on. The other main deployment environment is on your web browser. Most commercial browsers supply a Java technology interpreter and runtime environment. 

2.2.3 Some Features of Java 

2.2.3.1 The Java Virtual Machine 

The Java Virtual Machine is an imaginary machine that is implemented by emulating software on a real machine. The JVM provides the hardware platform specifications to which you compile all Java technology code. This specification enables the Java software to be platform-independent because the compilation is done for a generic machine known as the JVM. 

A bytecode is a special machine language that can be understood by the Java Virtual Machine (JVM). The bytecode is independent of any particular computer hardware, so any computer with a Java interpreter can execute the compiled Java program, no matter what type of computer the program was compiled on. 

2.2.3.2 Garbage Collection 

Many programming languages allows a programmer to allocate memory during runtime. However, after using that allocated memory, there should be a way to deallocate that memory block in order for other programs to use it again. In C, C++ and other languages the programmer is responsible for this. This can be difficult at times since there can be instances wherein the programmers forget to deallocate memory and therefor result to what we call memory leaks. 

In Java, the programmer is freed from the burden of having to deallocate that memory themselves by having what we call the garbage collection thread. The garbage collection thread is responsible for freeing any memory that can be freed. This happens automatically during the lifetime of the Java program. 

[image: image2.jpg]



2.2.3.3 Code Security 

Code security is attained in Java through the implementation of its Java Runtime Environment (JRE). The JRE runs code compiled for a JVM and performs class loading (through the class loader), code verification (through the bytecode verifier) and finally code execution. 

The Class Loader is responsible for loading all classes needed for the Java program. It 
adds security by separating the namespaces for the classes of the local file system from 
those that are imported from network sources. This limits any Trojan horse applications 
since local classes are always loaded first. After loading all the classes, the memory 
layout of the executable is then determined. This adds protection against unauthorized 
access to restricted areas of the code since the memory layout is determined during 
runtime. 

After loading the class and layouting of memory, the bytecode verifier then tests the format of the code fragments and checks the code fragments for illegal code that can violate access rights to objects. 

After all of these have been done, the code is then finally executed. 

[image: image3.jpg]Editor

One tine Every
only tine

Java

—

Hello java

Compiler

Java
Interpreter|

Hello.class





2.2.4 Phases of a Java Program 

The following figure describes the process of compiling and executing a Java program. 

Figure 2.1: Phases of a Java Program 

The first step in creating a Java program is by writing your programs in a text editor. Examples of text editors you can use are notepad, vi, emacs, etc. This file is stored in a disk file with the extension .java. 

After creating and saving your Java program, compile the program by using the Java 
Compiler. The output of this process is a file of Java bytecodes with the file extension . 
class. 

The .class file is then interpreted by the Java interpreter that converts the bytecodes into the machine language of the particular computer you are using.

Task

Write the program

Compile the program

Run the program




Tool to use 
Output

Any text editor 
File with .java extension

Java Compiler 
File with 
.class extension

(Java bytecodes)

Java Interpreter 
Program Output

Table 7: Summary of Phases of a Java Program

