
Lecture 7

Circular Linked List

A linked list in which last node's ptr contains the address of first node is called as circular
linked list.

It is very easy to build a circular linked list and performing operations like insertion and
deletion.We will start with building a circular linked list.

Build a Circular Linked List

Step1: Create a node, call this node as head. Store null in head.

node *head = null;

Step2: Create another node, call this node as temp; Allocate memory to temp.

node *temp = (void *)malloc(sizeOf(node));

Step3: Ask the user to enter value in temp.

printf(“Enter value”);
scanf(“%d”,temp->value);

Step4: Make head point to temp.

head = temp;

Step5: Since this is the first node, it's link should point to itself.

temp->link = head;

Step6: Start a loop, which repeats itself as long as ans == 'y'

while(ans == 'y') {

Step7: Create another node, call this node as temp1. Allocate memory for temp1. Ask the
user to enter value.

temp1 = (node *)malloc(sizeOf(node));

head

printf(“Enter value”);
scanf(“%d”, temp1->data);

Step8: We want tomake temp1 as the last node. To make temp1 as last node, current last
node (which i s temp) link should contain the address of temp1.

temp->link = temp1;

Step9: temp1 is the second node and also last node. That means, temp1's link should store
the address of temp.

temp1->link = head;

Step10: Make temp point to temp1.

temp = temp1;

Step11: Ask the user, if he wish to add more node.

printf(“Do you wish to add more nodes”);
scanf(“%c”, &ans);

}

Here is the complete code for Building a circular linked list.

void main
{

Structure node
{

int data;
node *link;

};

node *head;
node *temp;
node *temp1;

// ans is a character variable with default value 'y'
char ans = 'y';

head = null;
// create and allocate memory to 1st node

temp = (node *) malloc (sizeOf(node));

// ask the user to enter value
printf(“Enter value”);

scanf(“%d”, temp->value);
// // Since temp is the first node, head should point to the first
// node. i.e. head contains the address of first node.

head=temp;

//temp is the first and last node, last node link part
// always store the address of first node

temp->next = head;

// Start a while loop, which will iterate as long as ans == 'y'
while (ans == 'y') {

// create and allocate memory for temp1
temp1 = (node *) malloc(sizeOf(node));

// ask the user to enter value
printf(“Enter value”);
scanf(“%d”, temp1->value);

// We want to make temp1 as the last node. i.e., temp's link
//(which is currenly last node) should contain the address of temp1.

temp->link = temp1;

// now temp1 is the last node, so temp's link should contain store
// the address of first node.

temp1->link = head;

//Move temp to last node i.e temp1
temp = temp1;

// Ask the user whether he want to add more nodes
printf(“Do you wish to add more nodes”);
scanf(“%c”, &ans);

}

Printing a Circular Linked List

We have a circular linked list, and head points to the first node, we want to print this
linked list.

Step1: Make temp point to the first node.
temp = head;

Step2: Start a do while loop, which iterates as long as temp != head
do {

Step3: print the data at temp
printf(“%d”, temp->data);

Step4: Move temp to next node.
temp = temp->next;

Step5: Check the condition of while loop
} while (temp!=head);

Below is a program for printing a ciruclar linked list

//Make temp point to the first node.
temp = head

// Start a do-while loop
do
{

// Print the data
printf(“%d”,temp->data);

// Move temp to the next node
temp = temp->next;

}while (temp!=head);

