Lecture 4
In this lecture, we will learn
1. Pointers and Structures
2. Pointers and 2-dim arrays
3.Sparse(<2lF S0[> 5|¢tst, H71, EEEE & (opp- dense)) Matrices

Structures

In one of previous(0|&™2]) lectures,we learn that data types can be classified(EFE; <& 17t>
& 599]) into 2 types.

1. Primitive (AlQl, Z=7|2l;Efm 2|, o)

2. User Defined Data type

Primitive data type are int, char, float, etc provided by the language.

User defined data type is what we (user) make depending on our requirements (272, E2=,
4 E

). For example, I want a data type which can store information (7é§_'?'_, 22L&, 24Xt &) about an
employee. Now, for this requirement, I can create my own ([A %2 5£€ ZZX35t04] Rt7| RFAlQ])
data type. We use structure for creating user defined data type. Structures in C are very
much similar (£2/01) to Classes in C++.

We are now going to create a user defined data type which can store all the information about
an employee. Every employee has the following information

1. Last Name

2. First Name

3. Salary

Structure employee

{

char lastName[20];
char firstName[20];
float salary;

Jor

Now, employee is a user defined data type. We can create a variable of type employee like
we create variable of type int or char or float.

lastName, firstName, salary are called as structure members.
employee e;

C compiler allocates (HH&£3ICH) 44 bytes (20+20+4)for 'e'. We can use the sizeOf(employee)
to find the amount of memory allocation.

Write a program to read a variable of type employee and then print its value.

One thing that is important to notice in the above program is, How we access (& 4A-Atg Sof
9l) the structure members?

We can access structure members of a structure by using a '.' operator. For example, to
access lastName, we use e.lastName.

Next topic is, How can we use pointers with Structures. Well, it is quite easy and same as we
use pointers with variables. To declare a pointer to a structure, syntax is

To access the structure members using pointer, syntax is

Here is a program that prints the value of structure members using pointers.

Pointers and 2-dim arrays

We know that 2-dim arrays are the one that has 2 dimensions. For example

Assume we have filled (R 2C}) this two dimensional array with data of some kind. In memory,
it might look as if it had been formed by initializing (E|A3-L4E 7|4 x| S2) 5 separate (7I2
C}, EiCt, 22I8iC}) arrays using something like:

Ch[O] — {IOIII1l’|2|’l3|’l4|’|5|’I6|,I7l’|8l’|9|}
Ch[l] — {la|’lbI’lCI’ldI’IeI’lfI’Igl’Ihl’Iil’ljl}
Ch[2] — {IAIIIBI’ICIIIDlllEl’|F|,lG|,|HIIIIIIIJl}

Ch[3] — {l9l’l8l’|7I’l6lll5I’I4|’l3|’I2l’|1IIIOI}
Ch[4] — {IJIIIIl’|H|,lG|’|FIIIE|,|DII|C|’|B|’|A|}

So, there are 5 arrays, each of size 10 and all referred (Z0l2 == 3lCt, =3|5HCH) by a
common (8&82|, 38°2l, 372]) name ch.

Individual elements can be referred (20t2 =5 3lct, =2|35lC}) as
ch[0][0] = '0";

ch[1][2] = 'c;

etc

i.e. *(ch+i) or ch[i] is the addres of ith row.

The following program prints the address of rows of a 2-dim array.

So, what is

i.e.(*(ch+i)+j), it is the address of (ith row, ith col) or *ch[i][j].

The following program prints the addresses of all the elements of

And
((a+i)+j) is equivalent to alil[j].

Matrices

In mathematics, matrix is a rectangular table of humbers. The horizontal lines in the matrix
are called as rows and vertical lines are called as columns. We can represent matrix using a 2-

dim arrays.

Some basic definitions related to matrices are.

1. Matrix is said to be square if number of rows is equal to the number of columns . i.e.

m=n.
2. When only the diagonal elements of the square matrix are 1, and every other element is
zero, it is called as Identity matrix.

3. In a square matrix, position wise the elements are divided as :
« Diagonal elements
 Lower triangle, i.e. elements below the diagonal.
e Upper triangle, i.e. elements above the diagonal.

Upper
Triangle

Lower
Triangle

Diagonal
Fig 3. two dimensional matrix with classifications.
4. Symmetric ((Bt9) CHEIXQl, AF&1X491) matrix is a square matrix whose transpose (<@l x|-=
ME> HI3#01 =CH'ZC}) is identical to the original matrix.
5. Transpose of the matrix is changing the row elements to the column elements. i.e. the

element in the (i,j) position will occupy (j,i) position in the transpose. The transpose
matrix will have the size n x m.

Sparse Matrix

A matrix in which majority (CH& &, CHCt=, Effgt) of the elements are zeros (0) is known as
sparse matrix.

In scientific calculations, a matrix with hundreds of row and column are used. Most of the
elements are 0 in these matrix. For example, in a 10x10 matrix, only 15 elements are
nonzero, remaining 85 elements are zeros. To save space, we can store a matrix in a different
form using 1-dim arrays.

Let's see how it works.

We will make a User Defined Data-Type using structure. This structure will contain three
elements

1. Row number
2. Column number
3. Value

Structure sparse
{
int row;
int col;
int value;

Make a 1-dim array of data-type sparse.
Structure sparse sl[size]; // size is declared as required.

We take an example to understand the concept of sparse matrices.

matrix A Row/Col0 1 2 3 4
0 200-30
1 0 01100
2 0-70 01
3 +4 0 009

fig 4. matrix of order 4 X 5

Above is a 4x5 sparse matrix which has only 7 values, remaining 13 values are 0. We can
represent the above matrix in a different data structure in order to save some space.

Structure sparse s1[8];
s1[0].row = 4, s1[0].col=5, s1[0].value=7

First entry of the array contains number of rows (4), number of columns (5) and number of
nonzero elements (7).

Second and subsequent (Ct=2l, I F9o[;iHZ7}F=) entries contain the row, col, value.
s1[1].row=0, s1[1].col=0, s1[1].value=2

s1[2].row=0, s1[2].col=3, s1[2].value=-3

s1[3].row=1, s1[3].col=2, s1[3].value=11

sl[4].row=2, s1[4].col=1, sl[4.value=-7

s1[5].row=2, s1[5].col=4, s1[5].value=1

s1[6].row=3, s1[6].col=0, s1[6].value=-4

Sparse Representation:

s1[0] |sI[1] si[2] s1[3] sl[4] sI[5] sl[6] sI[7]

row 4 0 0 1 2 2 3 3
col 5 0 3 2 1 4 0 4
val 7 2 301 71 4 9

sparse representation

Here the position 0 in the sparse matrix representation actually tell about the total humber of
rows , total number of columns and number of non-zero elements.

Below, is a program to represent a sparse matrix using 1-dim array.

Addition of two sparse matrices

First we need to decide the size of resultant (22, 22|] &3, &4 28) sparse matrix, i.e how
many rows and columns are there. For example, if there are 2 sparse matrices , one sparse
matrix 'x1' of size 3x4, and second sparse matrix 'x2'of size 4x3.

int x1[3][4] = {
{0, 0, 1, 0},
{2, 0,0, 0},
{0, 4, 3, 0},
3

Corresponding representation of sparse matrix 'x1' is

s1[0].row=3, s1[0].col=4, s1[0].value=4
s1[1].row=0, s1[1].col=2, s1[1].value=1

sl[2].row=1, s1[2].col=0, s1[2].value=2
s1[3].row=2, s1[3].col=1, s1[3].value=4

sl[4].row=2, s1[4].col=2, s1[4].value=3

2" sparse matrix

int x2[4][3] = {
{5, 0, 0%,
{2, 0, 3},
{0, 0, 1},
{0, 4, 0}
s

Corresponding representation of sparse matrix 'x2' is

s2[0].row=4, s2[0].col=3, s2[0].value=5
s2[1].row=0, s2[1].col=0, s2[1].value=5
s2[2].row=1, s2[2].col=0, s2[2].value=2
s2[3].row=1, s2[3].col=2, s2[3].value=3
s2[4].row=2, s2[4].col=2, s2[4].value=1

s2[5].row=3, s2[5].col=1, s2[5].value=4

We will create another structure variable 's3'. Number of rows in s3 will be greater of the
s1[0].row and s2[0].row

i.e. s3[0].row = max(s1[0].row,s2[0].row)
s3[0].row = max(3,4)
s3[0].row = 4

Similarly for columns in s3
s3[0].col = max(s1[0].col, s2[0].col)
s3[0].col = max(4,3)
s3[0].col = 4

So,
s3[0].row = 4, s3[0].col = 4, s3[0].value = ?

Step 2: Next, we will check whether([ZtH2lE &2 BAIEES 0[Z01] ...21X| 0{EX|) rows numbers
of s1 and s2 are same. If not same, then copy value from lower row humber.

If row numbers of s1 and s2 are same, then column numbers of s1 and s2 are compared. If
column numbers are also same, then add the values

i.e. S3[k].value = s1Ji].value + s2[i].value

If row numbers of s1 and s2 are same but column numbers of s1 and s2 are not same, then
copy value from lower column number.

For ex:
we will find

Structure s3 will be

s3[0].row=4, s3[0].col=4, s3[0].value=7
s3[1].row=0, s3[1].col=0, s3[1].value=5
s3[2].row=0, s3[2].col=2, s3[2].value=1
s3[3].row=1, s3[3].col=0, s3[3].value=4
s3[4].row=1, s3[4].col=2, s3[4].value=3
s3[5].row=2, s3[5].col=1, s3[5].value=4
s3[6].row=2, s3[6].col=2, s3[6].value=4
s3[7].row=3, s3[7].col=1, s3[7].value=4

