
Lecture 2
What we will learn
1. Definition of Arrays
2. Representation of Arrays in memory
3. Row-major Order and Column-major Order

In the previous lecture, we learned about how to find the complexity of algorithms and
search algorithms on array.

This week we will learn about arrays 1-dimensional, 2-dimensional, multi-
dimensional in more detail. 1-dimensional arrays are also known as 1-dim. Similarly
2-dimensional arrays are also known as 2-dim and multi-dimensional as multi-dim.
First we will learn how arrays are represented (나타내다, 의미하다, 상징하다) in
memory. Secondly, we will learn how to perform (이행하다, 실행하다, 다하다)
operations like insertion, deletion and traversal on arrays.

Definition (1-dim Array):
Array: An array is a data structure which can store values of same type. A 1-dim
array is an array with 1 index(지시하는 것;(계기 등의) 눈금, 바늘).

For example:
Array of product part numbers:
int part_numbers[] = {123, 326, 178, 1209};

Array of student scores:
int scores[10] = {1, 3, 4, 5, 1, 3, 2, 3, 4, 4};

Array of characters:
char alphabet[5] = {’A’, ’B’, ’C’, ’D’, ’E’};

Type variable_name[size];

We discussed data structure in our previous lecture, because an array is a kind of
structure which can hold data, therefore (그러므로, 그것[이것]에 의하여) we call an
array as a data structure. In fact (사실, (실제의) 일) any thing which is a structure and
can hold data is called as data structure.

Same type of data means, data of same data type. We have different data types in C
i.e. integer, character, float, boolean. These are primitive (원시의, 초기의;태고의,
옛날의) data types. We also have user defined data type which we will learn later.
But first we are dealing with primitive data type. Primitive data type means data type
provided by the language. Here C language provides data types .

In an array, all the data is of same data type i.e., if we declare an array of type integers
of size 5, it will be like this.

int a[5];

Here 'a' is the name of the array, of size 5 i.e. it can hold or store 5 integers. We

 index

cannot have 3 integer and other 2 floats or characters or boolean. All 5 values should
be integers.

That was the definition of arrays. Next we move on to representation of arrays in
memory.

Representation(나타내다 , 의미하다 , 상징하다) of Arrays (1-dim) in memory

When we declare int a[10], this statement allocates (배분하다) 10 consecutive(연속
적인, 계속되는;일관된,유의어) blocks (돌·나무·금속 등의) of memory.
Size(크기;치수) of each block in bytes is determined (결심시키다) by the data type.
If data type is 'int' as in previous example, each block is of size 4 bytes. If data type is
char, then each block is of size 1 bytes.

That means, for int a[10] 40 bytes of memory is allocated(배분하다). For char a[10],
10 bytes of memory is allocated.

Figure 1:Representation of Array 'a' of size 10 in memory

Figure1 shows an array of size 10 in memory.
a[0] is the 1st element in the array. Value of a[0] is 7.
a[1] is the 2nd element in the array. Value of a[1] is 6.
a[2] is the 2nd element in the array. Value of a[1] is 5.
a[3] is the 2nd element in the array. Value of a[1] is 4.
a[4] is the 2nd element in the array. Value of a[1] is 3.
a[5] is the 2nd element in the array. Value of a[1] is 2.
a[6] is the 2nd element in the array. Value of a[1] is 1.
a[7] is the 2nd element in the array. Value of a[1] is 0.
a[8] is the 2nd element in the array. Value of a[1] is 8.
a[9] is the 2nd element in the array. Value of a[1] is 9.

Address of a[0] is 100 (I assumed).
Address of a[1] is 104.
Address of a[2] is 108.
Address of a[3] is 112.
Address of a[4] is 116.
Address of a[5] is 120.
Address of a[6] is 124.
Address of a[7] is 128.
Address of a[8] is 132.
Address of a[9] is 136.

Since address of a[0] is 100, and each block is 4 bytes, also memory is allocated to

array element is contiguous (접촉하는, 인접하는), hence address of next element
a[1] is 104, a[2] is 108 and so on.
We can write a program which prints the value of each element and also address of
each element.

void main()
{

int a[10];
int i;

//reading the value of elements in the array
for(i=0;i<10;i++)
{

scanf(“%d”,&a[i]);
}

//writing the value of elements from the array
printf(“The value of elements of the array are ”);
for(i=0;i<10;i++)
{

printf(“\n Value of a[“,i,”] i s”, a[i]);
}

//writing the addresses of elements of the array
printf(“The address of elements of the array are”);
for(i=0;i<10;i++)
{

printf(“\nAddress of a[“,i,”] is ”, &a[i]);
}

}
Program to print the addresses of array elements

To print the elements of the array, we use a[i] and to print the addresses of the
elements of the array, we use &a[i].

That means

a[i]
a[0] 7
a[1] 6
a[2] 5
a[3] 4
a[4] 3
a[5] 2
a[6] 1
a[7] 0
a[8] 8

a[i]
a[9] 9

&a[i]
&a[0] 100
&a[1] 104
&a[2] 108
&a[3] 112
&a[4] 116
&a[5] 120
&a[6] 124
&a[7] 128
&a[8] 132
&a[9] 136

In our next lecture, we will talk about what is stored in name of the array and How
pointers are related to arrays. Do you know what is the output of the following
statement

pritnf(“%u”,a);

Definition 2-dim Array:

An array which has 2 index is called as 2-dim array. First index is called as row and
the second index is called as column.

Type variable_name[row][col];

Each 2-dim array has row * col number of elements

For example
int a[2][3] = {

{1, 2, 3},
{4, 5, 6}

 };

In above example name of array is 'a', which has 2 rows and each row has 3 columns,
much like 2 X 3 matrix. The array a can store 2 * 3 = 6 elements.

How to read and print element in a 2-dim array:

We will have 2 for-loops. One loop is called as outer(밖의, 바깥[외부]의)-loop and
another loop is called as inner(보다 친한;개인적인)-loop. It is important to
understand how this loop works.

 Index 1

Index 2

for(i=0;i<2;i++) // outer for loop, which executes 2 times for i =0, 1
{

for(j=0;j<3;j++) // inner for loop, which executes 3 times for j=0,1,2
{

printf(“i=%d, j= %d”, i,j);
}

}

when i=0, inner for loop executes 3 times and then finish.
Then i=1, inner for loop again executes 3 times and then finish.
Then i=2, outer loop finish.

That means printf statement executes for 6 times and output is

i=0, j=0
i=0, j=1
i=0, j=2

i=1, j=0
i=1, j=1
i=1, j=2

if we replace printf statement with scanf(“%d” &a[i][j]), we can read all the elements
of the array.

for(i=0;i<2;i++) // outer for loop, which execute 2 times for i =0, 1
{

for(j=0;j<3;j++) // inner for loop, which execute 3 times for j=0,1,2
{

scanf(“%d”,&a[i][j]); // scanf statement execute 6 times
}

}
Program to read values in a 2-dim array

If we replace scanf(“%d”,&a[i][j]) with printf(“%d”, a[i][j]), this will output the array.

for(i=0;i<2;i++) // outer for loop, which execute 2 times for i =0, 1
{

for(j=0;j<3;j++) // inner for loop, which execute 3 times for j=0,1,2
{

scanf(“%d”,&a[i][j]); // scanf statement execute 6 times
}

}
Program to print values from a 2-dim array

Representation of 2-dim arrays in memory:

2-dim arrays are represented in memory like 1-dim arrays. There are 2 ways to
represent 2-dim arrays in memory.

1. Row-major order
2. Column-major order.

Row-major order: In row-major order 2-dim array is accessed (장소·사람 등에의)
such that rows are stored one after the other. We start with the first row, and then
second row. Take an example.

int a[3][3] = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9}

 };

The name of array is 'a', it has 3 rows and 3 columns. Number of elements in the array
are 3 *3=9.

Row-major order Column-major Order

When this array is stored in row-major order, it will stored in a 1-dim array starting
with 1st row i.e. 1, then 2, then 3. After this 2nd row i.e. 4, 5, 6 and then 3rd row i.e.
7,8,9. i.e.

Row-major order

Q What is the address of a[i][j]?

Lets us say we have a declaration
data-type a[r][c], which means, an array 'a' consisting of 'r' number of rows and 'c'
number of columns.
Let us also assume that the base address is 'b'.

then a[i][j] = b + size-of-datatype * ((i * r)+ j)

Column-major Order: In column-major order 2-dim array is accessed such that
column are stored one after the other. We start with the first column, and then second
column and so on. Take an example.

int a[3][3] = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9}

 };

The name of array is 'a', it has 3 rows and 3 columns. Number of elements in the array
are 3 *3=9.

When the above array is stored in column-major order, it will be stored in 1-dim array
starting from colum1 i.e 1, then 4, then 7. After that column2 i.e. 2, then 5, then 8.
After that column3 i.e. 3,6,9. Refer figure below.

Column-major Order

Q What is the address of a[i][j]?

Lets us say we have a declaration
data-type a[r][c], which means, an array 'a' consisting of 'r' number of rows and 'c'
number of columns.
Let us also assume that the base address is 'b'.

then a[i][j] = b + size-of-datatype * ((j * c)+ i)

